Nashoba Regional Schools Emerson School Wing Bolton, MA 2020 # **HVAC System Evaluation** ## **Prepared For:** Nashoba Regional School District 50 Mechanic Street Bolton, MA 01749 ### **Prepared By:** BLW Engineers, Inc. 311 Great Road Post Office Box 1551 Littleton, MA 01460 September 4, 2020 #### **EXECUTIVE SUMMARY** #### General The Nashoba Regional School District engaged BLW Engineers to evaluate the HVAC systems serving these buildings relative to their current operating conditions, re-opening of the building to the public and potential considerations related to Covid-19. While at the site, BLW Engineers met with the facilities operator who reported the HVAC systems receives regular preventative maintenance which includes filter replacement, grease motors and bearings, replace fan belts and verify damper and valve operation. The Florence Sawyer Elementary School is located at 100 Mechanic Street in Bolton. The school comprises approximately 139,000 square feet of educational space with enrollment of approximately 720 students. The building was originally constructed in 1997, with most of the HVAC systems and equipment having been installed at that time. #### Florence Sawyer Elementary School Planned Reopening The Nashoba Regional School District plans on the following school re-opening for the Florence Sawyer Elementary School: - School is to be occupied by students and teachers in the hybrid model with 50% occupation Monday/Tuesday; Wednesday disinfection/cleaning; 50% occupation Thursday/Friday; Saturday disinfection/cleaning. - Classrooms seating will be reorganized to provide recommended social distancing. - Cafeteria will not be used in normal fashion; students will eat lunches at their desk. - Gym will not be used in normal fashion. - Library and Auditorium will not be used in normal fashion; they will be used primarily as classroom space. #### Recommendations Based on applicable guidelines (ASHRAE, State of Massachusetts Re-opening Guidelines, Massachusetts Teachers Association, etc.), the Florence Sawyer Elementary School is safe to occupy and should consider the following best practice operation of the current HVAC system in an effort to provide an environment to best protect the occupants and visitors to the building during the pandemic: Tier 1 Recommendations: Tier 1 recommendations are immediate revisions to system operation prior to start of classroom and until the start of the heating season. - 1. Create an "Epidemic Mode" Building Management System sequence of operation that can be turned on, shut down or override, if needed, by manual selection of the operator. - 2. Replace the unit filters with the best filters available that will not impact the heating capacity of the units and develop a filter replacement plan; the existing rooftop units and air handling units will not be able to accommodate MERV13 filters without significantly impacting system operation, outdoor air delivery to the space and equipment component failures. - 3. Filter upgrades will require more frequent changes due to pressure drop of filter and particulates that "dirty" the filters. - 4. Continued operation of heating and cooling systems is recommended. - 5. Operate toilet exhaust fans 24 hours a day, 7 days a week.; other fans shall operate two hours prior and two hours post occupied hours. - 6. Monitor Carbon Dioxide (CO2) levels in occupied areas of the building. - 7. Should building exhaust exit building through sidewall louvers subject to pedestrian traffic, provide warning signs and consider diverting or rearranging the exhaust air discharge locations so that they would pose no opportunity to cause harm. - 8. Operate the building in occupied mode with mechanical ventilation prior and two hours post occupied hours; where mechanical ventilation and exhaust are not currently provided, utilize operable windows. - 9. Operate the building in the occupied mode during disinfection and cleaning operations. - 10. Operate building air handling equipment with highest percentage of outdoor air possible without adversely affecting the occupied environment; outdoor air percentage will be dependent on outdoor air temperature and allowable indoor air temperatures above/below normal operation. - 11. Operate all air handling units at maximum design air flow; the units did not have any data on the outdoor for ventilation design and should have balancing measurements taken to determine space occupancy based on the unit's capability of providing 20 CFM per occupant. - 12. At the commencement of school and until the heating season and when outdoor air temperature conditions allow, the air handling equipment can be operated with recirculated air can be run in the "economizer mode" with 100% outdoor air and no recirculation. - 13. Reset discharge air setpoint as high as possible for variable air volume systems to encourage variable air volume dampers to maximized outdoor air into the building. - 14. Disable any CO2 demand control ventilation sequences of operation and occupancy setback controls; operate units at maximum outdoor air capacity. - 15. Eliminate outdoor air to zones that are not occupied to better use in occupied areas. - 16. Relocate occupants from areas that do not have mechanical ventilation or operable windows. - 17. Use operable windows when outdoor air conditions allow. - 18. Keep conference room doors open as much as possible or open windows when feasible. - 19. Increase regular maintenance of all mechanical heating, ventilating and air conditioning equipment. - 20. Monitor the heating, ventilating and air conditioning operation of the building on a continual basis. - 21. Follow recommendations of holistic view of building recommendations in General Recommendations. Tier 2 Recommendations: Tier 2 recommendations are supplemental revisions/additions to the existing systems that may be required for the heating season when systems will need to utilize recirculated air to maintain space temperature setpoints. - 1. Provide additional filtration with portable HEPA filter units or UV filtration units for areas that might have multiple occupants served by units that utilize recirculated air. - 2. Install portable humidifiers or retrofit existing heating/ventilating equipment with humidifiers for local humidity control. - 3. Add plug-in type supplemental electric heat as required for increased ventilation requirements. - 4. Apply and use outdoor air quality sensors or reliable web-based data for outdoor pollution information as part of the new ventilation operation. - 5. Consider UV decontamination lights on highly touched surfaces. #### Notes: - 1. These recommendations are based on guidance provided by applicable agencies and publications for best practices for protection of occupants and visitors to the building but do not provide absolute protection from the pandemic. - **2.** These recommendations will have a significant impact on the operating and maintenance related costs of the HVAC systems. #### **HVAC SYSTEM EVALUATION** #### General The Nashoba Regional School District engaged BLW Engineers to evaluate the HVAC systems serving these buildings relative to their current operating conditions, re-opening of the building to the public and potential considerations related to Covid-19 While at the site, BLW Engineers met with the facilities operator who reported the HVAC systems receives regular preventative maintenance which includes filter replacement, grease motors and bearings, replace fan belts and verify damper and valve operation. The Emerson Building located at 50 Mechanic Street in Bolton contains the administrative offices for the school district as well as an elementary school wing. The building was originally constructed in 1922, with major additions in 1952 and 1972 expanding to a total of approximately 45,000 SF. The oldest portions of the building are occupied by offices and meeting spaces and the newer portion is the school, comprising approximately 30,000 square feet of educational space. The elementary wing underwent renovations in 1999, with some but not all of the current HVAC systems and equipment having been replaced at that time. #### **Existing Conditions** The majority of the heating for the elementary wing of the building is provided through a hydronic system consisting of a two-pipe distribution that is fed from one oil-fired, non-condensing boilers and constant speed circulation pumps. The distribution piping supplies indoor air handling units (AHU), fin tube radiation (FTR), cabinet unit heaters (CUH) and various smaller convective heaters throughout the building. The typical air handling unit consists of a supply fan, a hot water heating coil, damper section and filter-mixing box. Cooling is provided to a few large spaces through cooling coils in the associated air handling units interconnected by refrigerant piping with split, direct expansion (DX) condensers on the roof. The classrooms are served by several central air handling units located in the Mechanical Room on the roof level, providing ventilation and tempered supply air to the rooms. The air handling units operate at constant volume and hot water flow through the coil is controlled to maintain a discharge air temperature set point. Outdoor air is drawn through a common wall louver and plenum to the various units, mixes with return air from the space, is filtered and heated then supplied to the building. Excess air is exhausted from the classrooms at ceiling registers, through a ductwork distribution to roof mounted fans and discharged outdoors. Classrooms with perimeter, exterior exposures are provided with fin tube radiation controlled by local thermostat/sensor and have operable windows or exterior doors. Interior classrooms are not provided with supplemental heat. The roof exhaust fans are reported to be controlled by local switches. The current code requirement for ventilation air flow to a typical classroom would be Ventilation = 10 CFM x # Occupants + 0.12 CFM x SF. New filters have recently been installed on these units and are reported to be MERV 10 (~50% efficiency). The Cafeteria and Gymnasium is a shared space that could be divided by a movable curtain/wall and is served by central air handling units located in the Mechanical Room on the roof level, providing ventilation and tempered supply air to the space. The air handling units operate at constant volume and hot water flow through the coil is controlled to maintain a discharge air temperature set point. Outdoor air is drawn through a common wall louver and plenum to the various units, mixes with return air from the space, is filtered and heated then supplied to the building. Excess air is exhausted from the space through wall mounted propeller fans. The ventilation air flow to this space is reportedly based on also providing make-up air for a kitchen area which has been removed/re-purposed for early education activities. This area is served by two hot water cabinet heaters located near the exterior wall and controlled by local thermostat/sensors. The kitchen exhaust fan has been disabled and abandoned in place. New filters have recently been installed on the air handling units and are reported to be MERV 10 (~50% efficiency). The corridors and administrative areas are served by central air handling units located in the Mechanical Room on the roof level, providing ventilation and tempered supply air to the space. The air handling units operate at constant volume and hot water flow through the coil is controlled to maintain a discharge air temperature set point. Outdoor air is drawn through a common wall louver and plenum to the various units, mixes with return air from the space, is filtered and heated then supplied to the building. Excess air is exhausted from the spaces at ceiling registers, through a ductwork distribution to a roof mounted fan and discharged outdoors. The main entry is provided with cabinet unit heaters and spaces with perimeter, exterior exposures are provided with fin tube radiation controlled by local thermostat/sensor. New filters have recently been installed on the air handling units and are reported to be MERV 10 (~50% efficiency). Bathrooms, Janitor's Closets, Storage, etc. are exhausted through registers and ductwork connected to roof mounted exhaust fans. Bathrooms are provided with hot water heating terminal equipment. The electric room has been provided with heat dissipation systems including an exhaust fan, a gravity intake with motor operated damper and a temperature sensor to maintain a maximum space temperature. Miscellaneous spaces have been provided with hot water terminal equipment interconnected with the hot water distribution piping system. #### **GENERAL PUBLICATION RECOMMENDATIONS** Publications referenced include ASHRAE and State of Massachusetts Re-opening Guidelines for schools. Operating school buildings under epidemic conditions requires a holistic framework during the crisis and the restoration to potentially a new "normal" after the public health emergency has ended. Considerations include: - Review of current operational practices - Holistic view for owner/operator #### **Review of current operational practices** - Modes of operation of HVAC systems - o sequences of operations - set points - o schedules - Verification that equipment and systems are properly functioning and have the enhanced capabilities to address public health considerations, with a focus building air circulating systems. - Understanding that infected people who are asymptomatic may enter buildings, increasing the likelihood of the spread of virus through air systems to other occupants. #### Holistic view for owner/operator #### Owners and operators should take a holistic view of their buildings and: - 1. Develop a pandemic preparedness plan - 2. Review indoor and outdoor environment - 3. Review the space types - 4. Operate and maintain HVAC - Air-Conditioning and Ventilation systems - Exhaust systems - 5. Check Elevator Control - 6. Check BAS and Access Control Systems #### **Develop a Pandemic Preparedness Plan** #### **Consider these possible goals:** - Reduce the spread of infection among building occupants, - Maintain HVAC and Building Service Systems in safe and healthy conditions, - Minimize impact on building occupants and visitors, - Communicate risks and precautions being taken with occupants transparently - Implement measures that help make occupants feel secure: - Require occupants, visitors and maintenance personnel to wear appropriate PPE per CDC. - Screen, monitor and control the circulation of occupants and guests to help avoid transmission of disease, - o Increase frequency for surface disinfection on frequently touched surfaces, such as door handles, handrails, door bells and elevator buttons. #### Ensure continuity of supply chains and have backup plans. - Identify your critical suppliers, e.g. filters, cleaners, disinfectants, parts, PPE, etc., - Identify vendors who could negatively affect your operation if they fail to deliver, - Review current service provider agreements to see if alternate suppliers can be engaged in the event of a supply disruption, for example, equipment service providers, and understand contract limitations and restrictions on using alternative providers, - Ask critical suppliers to share their pandemic plans: - o What does their plan include? - o Have they tested their plan? When was it updated? - Set boundaries with suppliers ask that they do not send staff who may be showing signs of illness to your property. #### **Review contract agreements:** Review contract agreements: Review contracts with service providers, utilities, and suppliers to determine what rights and remedies they have because of disruptions due to unforeseeable circumstances that prevent fulfillment of a contract. #### Establish a communication protocol and continuity of operations plan: - Identify key contacts and publish normal and emergency contact information, - Document the chain of command and communication requirements, and provide instructions and outline expectations for how all responses are to be documented and what records shall be maintained and distributed. #### Provide staff with: - PPE per CDC and OSHA requirements, - Training on the proper use and disposal of PPE and waste, - Training on infection prevention and control measures, - Cross training to ensure critical building functions are maintained in an emergency, and - Instruction to staff to stay at home if they are feeling sick. Check with insurance providers to determine whether there are special measures that can be taken to preserve coverage or lower premiums. #### **Next Steps:** - 1. Notify staff, tenants and visitors about the plan - 2. Follow all local, state and federal executive orders, statutes, regulations, guidelines, restrictions and limitations on use, occupancy and separation - 3. Follow OSHA Guidelines, especially the portion in the guide regarding filter and outside air. - 4. Ensure that custodial staff and service providers job descriptions includes performing proper cleaning procedures based EPA and CDC guidance using approved products and methods: - Disinfect high touch areas of HVAC and other Building Service systems such as on/off switches, and thermostats; - o Consider UV light disinfection devices of high touch counters in public spaces. - o Disinfect interiors of refrigerated devices, such as refrigerators, coolers and vending machines where the virus can survive for potentially long periods of time. - 5. Consider installing a thermal camera at building entrances to help screen visitors for elevated body temperatures. Note that that infected individuals may show no signs of being ill, including having no fever, and can be responsible for much of the transmission. In such cases, thermal imaging may not be effective. - 6. Provide MERV13 or higher filters for air handling equipment that recirculate air when equipment has the capacity. - 7. The HVAC systems that are physical or capacity limited for better filtration and UV decontamination systems in the return airstream, consider installing portable filtration and air cleaning devices such as UVGI (Ultraviolet Germicidal Irradiation), especially if seniors or anyone with other health issues or compromised immune systems may be located, or, in mission critical areas where required. - 8. Provide automatic hand sanitizer dispensers in the high touch areas and other common areas, including spaces where equipment where frequent maintenance is required, and ensure dispensers are serviced often and remain operational. - 9. Post signage in prominent locations that contain information and instructions to educate and remind staff about proper procedures to maintain personal protection while cleaning, replacing filters and moving or using other equipment that maybe contaminated - 10. Consider providing antimicrobial door mats at high traffic entrances to the building. - 11. Institute additional cleaning procedures to ensure proper disinfection of bathrooms, kitchens and common areas. Educate cleaning and maintenance staff on proper personal protection and PPE use including following OSHA worker exposure guidelines. #### **Review Indoor and Outdoor Environment** - Maintain dry bulb temperatures within the comfort ranges indicated in ANSI/ASHRAE Standard 55-2017 - Maintain relative humidity between 40% and 60% through the use of the air conditioning systems. #### **In Cold Climates** - i. HVAC systems with no humidification may not achieve the minimum humidity indicated, - ii. Observe building assemblies and finishes frequently for condensation when indoor dew points rise above the surface temperatures of the assemblies and finishes, - iii. Excessive humidity may lead to condensation, indoor mold growth, and degradation of indoor air quality. #### Review the space types | Conference
Rooms | Keep doors to be opened to promote good ventilation where possible. If doors must be closed, consider local air filtration and cleaning devices and appliances such as portable air filters, or provide local exhaust fans discharging directly to the outside to improve ventilation. | |---------------------------------|--| | Pantries/Storage
Rooms | Provide local exhaust, or portable air filtration and cleaning appliances, especially if refrigerators, or similar appliances, are presented. | | Public/Large
Assembly Spaces | Where there can be a large assembly of people, consider air treatment, e.g. upper-room UVGI lamps. | #### Operate and maintain the HVAC system Building owners and service professionals should follow the requirements of ASHRAE Standard 180-2018, Standard Practice for the Inspection and Maintenance of Commercial HVAC Systems which has tables to show the typical maintenance required for equipment that has been in operation. Consider PPE when maintaining ventilation materials including filters, condensate. Consult additional guidance before duct cleaning. Check specifically: - Dampers, filter, and economizers seals and frames are intact and clean, are functional and are responding to control signals. MERV13 or higher filters are required for capture of airborne viruses; however, most existing equipment will not be able to support the associated pressure drop of these filters and equipment should be provided with only the highest MERV rating that does not affect the heating and cooling capacity of the units. - Zone and air temperature are calibrated and accurately reporting environmental conditions to the BAS or local controllers. - Exhaust fans are functional and venting to the outdoors. - Check outside air intake regularly for any potential risk such as exhaust nearby and provide proper clearance if assessible by pedestrians, etc. #### Operate and maintain the HVAC system – Air conditioning and ventilation systems - Continued operation of all systems is recommended. - For offices with fan coil units, open windows 2 hours before and after occupied periods. #### Centralized and floor-by-floor Variable Air Volume (VAV) systems: General information • For central or floor-by-floor VAV systems that have the capacity to operate with 100% outside air, such as an economizer cycle, close return air dampers and open outdoor air dampers to 100% or to the maximum setting that the HVAC system can accommodate and still maintain acceptable indoor conditions. - If there are heating and cooling coils to temper the air, it can provide comfort and eliminate recirculation (in the mild weather seasons this will have smaller impacts to energy consumption, thermal comfort, or humidity control, however, using 100% outside can be more difficult in extreme weather conditions). - Considerations also should be given in areas with dry outside air that may lower the relative humidity to below 40%. - Prioritize increasing outside air over humidity (see concerns about operating at indoor humidity outside the range of 40%-60%). #### Centralized and floor-by-floor Variable Air Volume (VAV) systems: Floor-by-floor - In floor-by-floor VAV systems that have only minimum outside air damper positions or openings, open outside air damper to its maximum position (the same cautions and concerns stated above apply). - If outside air is supplied centrally from outside air handling units (typically at mechanical levels) to all floors, and there are unoccupied tenant floors, divert the outside air to the occupied floors. - Consider changing the floor level VAV air handling units' discharge air temperature setpoint the maximum (typically no higher than 60° F). - This will cause VAV terminal units (boxes) to open to try and satisfy space cooling loads which will increase the number of air changes in the space being served. #### Centralized and floor-by-floor Variable Air Volume (VAV) systems: Cooling coils - Cooling coils, heating coils and condensate drain pans inside air handling equipment can become contaminated. - Therefore, consider adding UVGI for coil surface and drain pan disinfection are encouraged as it will reduce the needs and frequency for in-person coil surface disinfection. - These devices and systems should be monitored often and regular and emergency maintenances should continue. - Provide PPE protection for building operators, maintenance technicians and anyone else who must inspect or come in contact with the device or equipment. #### Centralized and floor-by-floor Variable Air Volume (VAV) systems: Operable windows - In buildings with operable windows, when outside air thermal and humidity conditions and outdoor air quality are acceptable, open windows where appropriate during occupied hours. - Disabling the interlock between opening windows and air conditioning system lockout or shut down if this feature is provided for in the Building Automation System. - Monitor indoor spaces for possible contaminants entering through the windows such as toilets exhaust located nearby or for windows accessible to public and high traffic on adjacent streets and walkways. - Exposure to seasonal and other outdoor allergens (pollen and mold spores) may occur with windows opened. - Special ductwork cleaning, or, changing filters more often than normal is not necessary. #### **Domestic Heating Water systems:** • Keep heating water systems circulating and maintain temperatures above 140°F to avoid microbial incursion. Do not let water temperature to drop below 120°F. #### Operate and maintain the HVAC system - Exhaust systems - Exhaust system for toilets should run 24/7. Do not open operable windows in toilets. - Other exhaust systems should continue to run as normal. Run exhaust systems 2 hours before and after occupied periods. - If there are exhaust outlets located in pedestrian areas outside, provide warning signs and consider diverting or rearranging the exhaust air discharge locations so that they would pose no opportunity to cause harm. #### **Elevator Control** - 1. Turn on elevator cab (lift) ventilation fans, where possible - 2. Encourage occupants to take stairs, where possible, especially when elevator lobbies are crowded. - 3. Allow elevators to run at high speed to minimize time in elevator. - 4. Close elevator lobby vestibule doors, if available. - 5. Consider local air treatment devices in frequently used lifts. #### **Building Automation System and Access Control System Programming** #### **Building Automation Systems:** - Automate the control sequences in this document as a "Epidemic Mode" operation that can be turned on, shut down or override, if needed, by manual selection of the operator. - Provide remote access to staff and trusted service providers who are responsible for operating and maintain Building Automation Systems, security, access control, information technology, fire alarm and life safety systems. Have written procedures and test remote access and secure access levels and permissions for all individuals prior to an emergency, if possible. #### Access Control Systems: - Post signage and communicate to tenants, and post visitors' procedures for entering and leaving the building that will minimize the time spent in public spaces. - Use touchless assess control system if available and where possible. - Require and enforce social distancing within public and shared spaces using signage. - Ensure that workspaces are situated to accommodate social distancing recommendations.